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RELATIONS BETWEEN ADJACENCY AND MODULARITY
GRAPH PARTITIONING∗

HANSI JIANG†‡ AND CARL MEYER†§

Abstract. In this paper the exact linear relation between the leading eigenvector of the un-
normalized modularity matrix and the eigenvectors of the adjacency matrix is developed. Based on
this analysis a method to approximate the leading eigenvector of the modularity matrix is given,
and the relative error of the approximation is derived. A complete proof of the equivalence between
normalized modularity clustering and normalized adjacency clustering is also given. A new metric is
defined to describe the agreement of two clustering methods, and some applications and experiments
are given to illustrate and corroborate the points that are made in the theoretical development.
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1. Introduction. The graph partitioning problem is to partition a graph into
smaller components such that the components will have some specific properties. This
problem is sometimes also referred to as community structure detection in networks.
One kind of graph partitioning problem that has gained much scientific interest focuses
on partitioning the graph into components with similar size and tries to minimize the
number of edges cut in the process. Examples of applications are given in Section 4.

There are many algorithms focusing on solving this kind of problem that give prefer-
able graph partitioning results. Among the numerous methods, two clustering tech-
niques that use spectral properties of matrices derived from the adjacency matrices of
graphs are widely used and researched. Fiedler [6] discovered that a graph’s structure
is closely related to one of the eigenvectors of the Laplacian matrix of the graph, and
the eigenvector corresponds to the second smallest eigenvalue. Fiedler suggested in
[7] to use signs of the entries in the eigenvector to partition a graph. The clustering
method developed by Fiedler is widely referred to as spectral clustering. The con-
cept of modularity was first introduced by Newman and Girvan in [16], and further
explained by Newman in [15]. The modularity clustering method aims to partition
a graph while maximizing the modularity. Like the spectral clustering method sug-
gested by Fiedler, the modularity clustering method also uses signs of entries in the
eigenvector corresponding to a modularity matrix’s largest eigenvalue.

There are some modified versions of the spectral clustering and modularity clustering
methods. Chung [5] analyzes the properties of a scaled version of Laplacian matrices.
Shi and Malik [20] use the the scaled Laplacian matrices to develop a normalized
spectral clustering method and use it on image segmentation. Ng et al. [17] discuss
another version of normalized spectral clustering. In their method a one-side scaled
Laplacian matrix is used. Bolla [2] analyzes a normalized version of modularity clus-
tering.

Since modularity matrices are derived from the adjacency matrices of graphs, it is
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interesting to see if the same or similar clustering results can be obtained from eigen-
values of the adjacency matrices. In this paper relations and comparisons between
clustering results from using eigenvectors of modularity matrices and adjacency matri-
ces will be given, and the equivalence between using normalized modularity matrices
and normalized adjacency matrices to cluster will be proved.

Throughout the paper we assume that G(V,E) is a connected simple graph with
n = |V | vertices and m = |E| edges. Unless specifically noted, A is assumed to be an
adjacency matrix of a graph, i.e.

Aij =

{

1 if nodes i and j are adjacent
0 if otherwise.

The degree of a vertex is di =
∑n

i=1
aji, and D = diag(d1, d2, · · · , dn). The number

of clusters is always fixed to be 2. If more clusters are needed, the clustering methods
can be run iteratively to build a hierarchy to get the desired number of clusters. The
signs of the entries in the eigenvectors will be used to partition the graph. Assume
there are no zero entries in the eigenvectors used. It should be noted that although
the adjacency matrices are used in this paper, extending the results to use similarity
matrices is also possible. The graph Laplacian is defined by

L = D−A,

and the modularity matrix is defined by

B = A−
ddT

2m
,

where d =
(

d1 d2 · · · dn
)T

is the vector containing the degrees of the nodes. The
normalized versions of the graph Laplacian and the modularity matrix are

Lsym = D−
1

2LD−
1

2 and Bsym = D−
1

2BD−
1

2 ,

respectively. If e is a column vector with all ones, then it is easy to see that (0, e) is

an eigenpair of L and B, and (0,D
1

2 e) is an eigenpair of Lsym and Bsym.

The paper is organized as follows. Section 2 contains the approximation of the lead-
ing eigenvector of the modularity matrix with eigenvectors of the adjacency matrix.
Section 3 gives the equivalence between normalized adjacency clustering and normal-
ized modularity clustering. Section 4 gives example applications. Conclusions are in
Section 5.

2. Dominant Eigenvectors of Modularity and Adjacency Matrices. In
this section, we will write the eigenvector corresponding to the largest eigenvalue of
a modularity matrix as a linear combination of the eigenvectors of the corresponding
adjacency matrix. Before that, we first state a theorem from [3] about the interlacing
property of a diagonal matrix and its rank-one modification and how to calculate the
eigenvectors of a diagonal plus rank one (DPR1) matrix [14]. The theorem can also
be found in [23]. These results will be used in our analysis.

Theorem 2.1. Let C = D + ρvvT , where D is diagonal, ‖v‖2 = 1. Let d1 ≤
d2 ≤ · · · ≤ dn be the eigenvalues of D, and let d̃1 ≤ d̃2 ≤ · · · ≤ d̃n be the eigenvalues
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of C. Then d̃1 ≤ d1 ≤ d̃2 ≤ d2 ≤ · · · ≤ d̃n ≤ dn if ρ < 0. If the di are distinct and all

the elements of v are nonzero, then the eigenvalues of C strictly separate those of D.

Corollary 2.2. With the notations in Theorem 2.1, the eigenvector of C cor-

responding to the eigenvalue d̃i is given by (D− d̃iI)
−1v.

Theorem 2.1 tells us the eigenvalues of a DPR1 matrix are interlaced with the
eigenvalues of the original diagonal matrix. Next we will write the eigenvector corre-
sponding to the largest eigenvalue of a modularity matrix as a linear combination of
the eigenvectors of the corresponding adjacency matrix.

With the notations in Section 1, since A is an adjacency matrix, it is symmetric
and therefore orthogonally similar to a diagonal matrix. Therefore, there exists or-
thogonal matrix U and diagonal matrix ΣA such that

A = UΣAUT .

Suppose the rows and columns of A are ordered such that ΣA = diag(σ1, σ2, · · · , σn),
where σ1 ≥ σ2 ≥ · · · ≥ σn. Let U =

(

u1 u2 · · · un

)

. Similarly, since B is
symmetric, it is orthogonally similar to a diagonal matrix. Suppose the eigenvalues
of B are β1, β2, · · · , βn with β1 ≥ β2 ≥ · · · ≥ βn.

Theorem 2.3. Suppose β1 6= σ1, β1 6= σ2, and |β1 − σ2| = ∆. Then the

eigenvector corresponding to the largest eigenvalue of B is given by

1

‖UTd‖2

n
∑

i=1

uT
i d

σi − (σ2 +∆)
ui.

Proof. Since B = A− ddT /(2m), we have

B = A−
ddT

2m
= UΣAUT −

ddT

2m
= U(ΣA + ρyyT )UT ,

where y = UTd/‖UTd‖2 and ρ = −‖UTd‖22/(2m). Since ΣA + ρyyT is also sym-
metric, it is orthogonally similar to a diagonal matrix. So we have

B = UVΣBV
TUT ,

where V is orthogonal and ΣB is diagonal. Since ΣA+ρyyT is a DPR1 matrix, ρ < 0
and ‖y‖2 = 1, the interlacing theorem applies to the eigenvalues of A and B. More
specifically, we have

βn ≤ σn ≤ βn−1 ≤ σn−1 ≤ · · · ≤ β2 ≤ σ2 < β1 < σ1.

The strict inequalities hold because β1 6= σ1 and β1 6= σ2. Then |β1−σ2| = ∆ implies
β1 − σ2 = ∆. Let B1 = ΣA + ρyyT . Since B = UB1U

T , we have BU = UB1.
Suppose (λ,v) is an eigenpair of B1, then

BUv = UB1v = λUv

implies that (λ,v) is an eigenpair of B1 if and only if (λ,Uv) is an eigenpair of B.
By Corollary 2.2, the eigenvector of B1 corresponding to β1 is given by

v1 = (ΣA − β1I)
−1y = (ΣA − (σ2 +∆)I)−1 UTd

‖UTd‖2
,
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and hence the eigenvector of B corresponding to β1 is given by

b1 = Uv1 = U(ΣA − (σ2 +∆)I)−1 UTd

‖UTd‖2
=

1

‖UTd‖2

n
∑

i=1

uT
i d

σi − (σ2 +∆)
ui.

The point of Theorem 2.3 is to realize that the vector b1 is a linear combination of
the ui. Let

γi =
uT
i d

(σi − β1)‖UTd‖2
.

The purpose of the next theorem is to approximate b1 by a linear combination of ui

that have the largest |γi| and examine how good the approximation is by calculating
the norm between b1 and its approximation.

Theorem 2.4. With the notations and assumptions in Theorem 2.3 , let

γi =
uT
i d

(σi − β1)‖UTd‖2
.

Suppose that ik ∈ {1, 2, · · · , n}, and the γi are reordered such that |γin | ≤ |γin−1
| ≤

· · · ≤ |γi1 |. Then given p ∈ {1, 2, · · · , n}, b1 can be approximated by

v =

p
∑

j=1

γijuij ,

with relative error

erel =
1

q

√

√

√

√

n
∑

j=p+1

γ2
ij
,

where q is the 2-norm of the vector b1.

Proof. Since

γi =
uT
i d

(σi − β1)‖UTd‖2
,

the vector b1 can be written as

b1 =
n
∑

i=1

γiui =
n
∑

j=1

γijuij .

So if

v =

p
∑

j=1

γijuij

is an approximation of b1, then the difference between b1 and its approximation v is

b1 − v =

n
∑

j=p+1

γijuij ,
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and the 2-norm of b1 − v is

‖b1 − v‖2 =

∥

∥

∥

∥

∥

∥

n
∑

j=p+1

γijuij

∥

∥

∥

∥

∥

∥

2

=

√

√

√

√

n
∑

j=p+1

γ2
ij
,

because the ui are orthonormal. So if q is the 2-norm of the vector b1, then the
relative error of the approximation is

erel =
‖b1 − v‖2

‖b1‖
=

1

q

√

√

√

√

n
∑

j=p+1

γ2
ij
.

The utility of this error helps us gauge the number of terms that are required to
obtain a given level of accuracy when approximating the dominant eigenvector of the
modularity matrix with eigenvectors of the adjacency matrix.

3. Normalized Adjacency and Modularity Clustering. Parallel to the pre-
vious analysis, we will prove that the eigenvectors corresponding to the largest eigen-
values of a normalized adjacency matrix and a normalized modularity matrix will
give the same clustering results in nontrivial cases. A similar statement is mentioned
in [2] without a complete proof, and it is considered in [24] from a different perspective.

Suppose A is an adjacency matrix and Asym = D−1/2AD−1/2 is the corresponding
normalized adjacency matrix. Let L = D−A be the unnormalized Laplacian matrix
and Lsym = D−1/2LD−1/2 = I−Asym be the normalized Laplacian matrix. Finally
let B be the unnormalized modularity matrix defined in Section 1, P = ddT /(2m),
and Bsym = D−1/2BD−1/2 be the normalized modularity matrix. We first state the
theorem then prove it.

Theorem 3.1. Suppose that zero is a simple eigenvalue of Bsym, and one is a

simple eigenvalue of Asym. If λ 6= 0 and λ 6= 1, then (λ,u) is an eigenpair of Asym

if and only if (λ,u) is an eigenpair of Bsym.

The proof of the theorem is obtained by combining the following two observations.
The second observation needs more lines to explain so we write it as a lemma.

Observation 3.2. (λ,u) is an eigenpair of Lsym if and only if (1 − λ,u) is an

eigenpair of Asym because

Lsymu = λu

⇐⇒ (I−Asym)u = λu

⇐⇒ Asymu = (1− λ)u.

Lemma 3.3. Suppose that 0 is a simple eigenvalue of both Lsym and Bsym. It

follows that if λ 6= 0 and (λ,u) is an eigenpair of Lsym, then (1−λ,u) is an eigenpair

of Bsym. If α 6= 0 and (α,v) is an eigenpair of Bsym, then (1− α,v) is an eigenpair

of Lsym.
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Proof. For P = ddT /(2m), it is easy to observe that

Bsym + Lsym = D−
1

2 (A−P+D−A)D−
1

2 = I−D−
1

2PD−
1

2 .

Let E = D−
1

2PD−
1

2 . If (λ,u) is an eigenpair of Lsym, we have

λu = Lsymu

=⇒ λu = (I−Bsym −E)u

=⇒ (1 − λ)u = Bsymu+Eu.

Note that P is an outer product and P 6= 0, so rank(P)=1. Because E =

D−
1

2PD−
1

2 is congruent to P, E and P have the same number of positive, negative
and zero eigenvalues by Sylvester’s law [14]. Therefore rank(E)=rank(P)=1. To prove
Eu = 0, it is sufficient to prove u is in the nullspace of E.

Let e be the vector such that all its entries are one. Observe that

E ·D
1

2 e = D−
1

2PD−
1

2D
1

2 e = D−
1

2

ddT

2m
e

=
dTe

2m
(D−

1

2d) = D−
1

2d,

since dT e =
∑n

i=1
di = 2m is just the sum of the degrees of all the nodes in the graph.

Because D−
1

2d = D
1

2 e, (1,D
1

2 e) is an eigenpair of E. Also observe that

Lsym ·D
1

2 e = D−
1

2 (D−A)D−
1

2D
1

2 e = D−
1

2Le = 0.

Therefore, (0,D
1

2 e) is an eigenpair of Lsym. Since u is an eigenvector of Lsym corre-

sponding to a nonzero eigenvalue λ, we have u ⊥ D
1

2 e, so u is in the nullspace of E.
This gives Eu = 0 and thus (1−λ)u = Bsymu. Therefore λu = Lsymu ⇒ (1−λ)u =
Bsymu.

On the other hand, if (α,v) is an eigenpair of Bsym, then we have

αv = Bsymv

=⇒ αv = (I− Lsym −E)v

=⇒ Lsymv +Ev = (1− α)v.

Observe that

Bsym ·D
1

2 e = D−
1

2BD−
1

2D
1

2 e = D−
1

2Be = 0

because the row sums of B are all zeros. Therefore, (0,D
1

2 e) is an eigenpair of Bsym.
Since v is an eigenvector of Bsym corresponding to a nonzero eigenvalue α, we have

v ⊥ D
1

2 e, so v is in the nullspace of E. This gives Ev = 0 and thus (1−α)v = Lsymv.
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Therefore αv = Bsymv ⇒ (1− α)v = Lsymv.

By theorem 3.1, a bijection from the nonzero eigenvalues of Bsym to the eigenval-
ues of Asym that are not equal to one can be established, and the order of these
eigenvalues is maintained. Since zero is always an eigenvalue of Bsym, the largest
eigenvalue of Bsym is always nonnegative. Newman [15] gives a discussion of when
the largest eigenvalue of B can be zero. Since Bsym and B are congruent, it follows
that if zero is the largest eigenvalue of B, then it is also the largest eigenvalue of Bsym.

In this case, all nodes in the graph will be put into one cluster because (0,D
1

2 e) is an

eigenpair of Bsym and all entries in the vectorD
1

2 e are larger than zero. The following
theorem establishes that the eigenvectors corresponding to the largest eigenvalues of
a normalized adjacency matrix and a normalized modularity matrix are the same for
nontrivial cases (i.e. when the largest eigenvalue of B is not zero), and therefore they
will provide the same clustering results in nontrivial cases.

Theorem 3.4. With the assumptions in Theorem 3.1, and given zero is not the

largest eigenvalue of Bsym, the eigenvector corresponding to the largest eigenvalue of

Bsym and the eigenvector corresponding to the second largest eigenvalue of Asym are

identical.

Proof. Since Lsym is positive semi-definite [22], zero is the smallest eigenvalue
of Lsym. Then by Observation 3.2, one is the largest eigenvalue of Asym. Since all
eigenvalues of Asym that are not equal to one are also the eigenvalues of Bsym, it
follows that if the simple zero eigenvalue is not the largest eigenvalue of Bsym, then
the largest eigenvalue of Asym is the second largest eigenvalue of Bsym and they have
the same eigenvectors by Theorem 3.1.

4. Some Applications and Experiments. To corroborate the theoretical re-
sults obtained in the previous sections, experiments were conducted with three well-
known data sets. In the following experiments the effects of the units are first elim-
inated by normalizing each variable by the 2-norm if necessary, then the Gaussian
similarity function is applied to the data to generate a similarity matrix S. The pa-
rameters in the similarity function used for different data sets are different, and will
be specified individually. The mean, s, of all off-diagonal entries in S is computed
and the adjacency matrix is formed by

Aij =

{

1 if i 6= j and Sij ≥ s
0 if otherwise.

4.1. Data Sets. We used three popular data sets from the literature, and they
are described below.

4.1.1. Wine Recognition Data Set. The wine recognition data from the UCI
data repository [12] is one of the most famous data sets used in data mining [8][10][18].
The data set is a result of chemical analysis of wines growing in the same region. The
difference between the wines is that they are derived from three different cultivars.
The data contains 178 wine samples, the labels of the samples that tell which kind
of wine each sample is and 13 variables from chemical analysis. In the experiments
the data of the first two kinds of wines are used to generate a similarity matrix. A
good clustering method should be able to put samples from the same classes into the
same clusters. To build the similarity matrix, the Gaussian similarity function with
σ = 0.1 is used.
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4.1.2. Breast Cancer Wisconsin (Original) Data Set. The Breast Cancer
Wisconsin Data Set [13] is a widely used data in classification and clustering [1] and
it can be downloaded from the UCI data repository. The data contains 699 instances
and 9 attributes. The attributes are measurements of the sample tissues. Each data
has a label to indicate whether the tissue is benign or malignant. The data contains
16 instances that has missing values in the attributes, and the missing values are
replaced by zeros in the experiments. To build the similarity matrix, the Gaussian
similarity function with σ = 0.1 is used.

4.1.3. PenDigit Data Sets from MNIST database. The PenDigit data sets
are subsets of the widely used MNIST database [11][25][9][4][19]. The original data
contains a training set of 60,000 handwritten digits from 44 writers. One subset used
in the experiments contains some of the digits 1 and 7, and the other subset contains
some of the digits 2 and 31. Each piece of data is a row vector converted from a grey-
scale image. Each image is 28 pixels in height and 28 pixels in width, so there are 784
pixels in total. Each row vector contains the label of the digit and the lightness of each
pixel. Lightness of a pixel is represented by a number from 0 to 255 inclusively, and
smaller numbers represent lighter pixels. To build the similarity matrix, the Gaussian
similarity function with σ = 1, 000 is used.

4.2. Clustering Synchronization Rate. In classification methods the perfor-
mance is gauged by using metrics such as accuracy and error rate. More specifically,
the accuracy is defined as the number of correct classifications over the total number
of classifications, and the error rate is defined as the number of wrong classifications
over the total number of classifications [21]. Similar metics can be used to evaluate
how close two results from two different clustering methods can be. Suppose two
clustering methods M1 and M2 are used to partition the same data into two parts.
Define the clustering synchronization rate (CSR) between M1 and M2 to be
(4.1)

CSR(M1, M2) = max(
number of data put in the same clusters by M1 and M2

total number of data
×100%).

In other words this is the percentage of agreement between M1 and M2. Because
different clustering method may give different labels to a cluster, the max function is
used in the definition. If M2 is the known “ground” truth of the clusters, then the
CSR between M1 and M2 is as the same as the accuracy of M1. It should be noted
that the CSR is not relevant to the accuracy of the clustering methods unless one of
them is the ground truth.

4.3. Results. The experimental results are in the tables below. Table 1 contains
the number of data points in each data set and the accuracy of each clustering method
when applied on the data sets. The symbols L, B and Lsym in the table represent the
unnormalized spectral clustering, unnormalized modularity clustering and normalized
spectral clustering, respectively. These clustering results are used as the benchmarks.
Note that by Theorem 3.4, the clustering results from using Lsym and Bsym are the
same. The columns Ap use the approximations described in Theorem 2.4 with the
first p eigenvectors of the adjacency matrix to do clustering. In Table 2, the CSRs
between the leading eigenvector of B and its approximations are computed, and the
largest four magnitudes of γij described in Theorem 2.4 are listed.

1The data can be downloaded at http://www.kaggle.com/c/digit-recognizer/data
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Data Number of data points L B Lsym A1 A2 A3

Wine 130 56.2 91.2 92.3 91.2 91.2 91.2
Breast Cancer 699 70.0 96.6 96.3 87.0 96.7 96.7
PenDigit17 9085 51.8 96.9 96.3 82.9 96.5 97.0
PenDigit23 8528 51.2 90.1 88.2 89.2 90.2 90.3

Table 1: This table records the accuracy of the clustering methods on the data sets
where the accuracy is the number of correct classifications over the total number of
classifications. All numbers are percentages(%) except for the number of instances
column.

Data CSR(A1,B) CSR(A2,B) CSR(A3,B) |γi1 | |γi2 | |γi3 | |γi4 |
Wine 100.0 100.0 100.0 1344.7 21.1 1.2 0.53
Breast Cancer 88.4 99.9 99.9 59.5 31.2 2.1 0.45
PenDigit17 82.8 99.0 99.6 265.2 146.3 42.6 7.1
PenDigit23 94.2 99.6 99.6 653.0 150.1 17.2 5.1

Table 2: This table records the CSRs as defined in (4.1) between the leading eigen-
vector of B and its first three approximations, and the four largest magnitudes of γij .
The CSRs are percentages(%).

From Table 1, it can be seen that the approximations of the leading eigenvector
of B can outperform the unnormalized spectral clustering method for all data sets
considered, and the accuracy is about the same with the unnormalized modularity
method and the normalized spectral clustering method. In some cases, the clustering
results from the approximations are better than the benchmarks. From Table 2, it can
be seen that the CSRs between the leading eigenvector of B and its approximations
are higher than 80%. If two or three eigenvectors of A are used, then the CSRs are
higher than 99%.

5. Conclusion. In this paper the exact linear relation between the leading eigen-
vector of the unnormalized modularity matrix and the eigenvectors of the adjacency
matrix is developed. It is proven that the leading eigenvector of the modularity matrix
can be written as a linear combination of the eigenvectors of the adjacency matrix,
and the coefficients in the linear combination are determined. Then a method to
approximate the leading eigenvector of the modularity matrix is given, and the rel-
ative error of the approximation is derived. It is also proven that when the largest
eigenvalue of the modularity matrix is nonzero, the normalized modularity cluster-
ing method will give the same clustering results as obtained by using the eigenvector
corresponding to the smallest eigenvalue of the normalized adjacency matrix. A new
metric, the clustering synchronizing rate, is defined to compare different clustering
methods. Some applications and experiments are given to illustrate and corroborate
the points that are made in the theoretical development.
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